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A theoretical relationship is proposed for the determination of critical heat 
flows in long vertical tubes, and in channels of annular and rectangular con- 
figurations. 

The bgiling crisis which occurs in a channel closed off at the bottom (dead end) is 
caused by the loss of stability in the counterflow motion of the steam in the channel and 
by the liquid entering the channel from a collector above. The boundaries of stable counter- 
flow motion of a gas and a liquid have been studied most fully for the case of adiabatic 
flows and most of the studies neglect the influence of mass exchange between the phases [i-5] 
in determining the conditions for the onset in the heat-exchange crisis. Some authors associ- 
ate this heat-exchange crisis with the transition from the plug flow regime to a frothing 
regime [i], while others link this crisis with the transition from the frothing regime to 
an annular regime [2], or from an annular regime to a dispersive-annular regime [3]. 

The transition from the plug regime to the frothing regime, and from the annular regime 
to the dispersive-annular regime, is governed by the appearance of unstable waves at the 
boundary of phase separation. With counterflow motion the existence olsuch waves leads 
either to the capture of a portion of the liquid by a stream of ascending gas or to the separa- 
tion of the entire runoff film. For long vertical tubes this phenomenon, known as~Yflooding," 
in the case of 6 < Bo < 15 and Re I > 300 is sufficiently well described by the relatid~shSp 
of Wallace [6]: 

W~ (D) ':~ J W~ (D) ~~ -: Ct, (1)  

where C~ i s  an e m p i r i c a l  c o e f f i c i e n t  t h a t  i s  dependen t  on t he  s t r u c t u r a l  e x e c u t i o n  o f  t h e  
i n l e t  and o u t l e t  from t h e  work ing  s e c t i o n .  For  t u b e s  w i t h  p o i n t e d  r e a r  s e c t i o n s  C1 = 0 . 7 2 5 ,  
w h i l e  f o r  t h o s e  whose s t e r n s  a r e  rounded  C1 ~ 0 . 8 8 ,  and i f  t he  end e f f e c t s  can be n e g l e c t e d ,  
t hen  C1 = 1. 

In  t he  c a s e  o f  Bond numbers g r e a t e r  t h a n  15, t h e  c r i t i c a l  r educed  v e l o c i t i e s  become 
s m a l l e r  than  t h o s e  d e t e r m i n e d  from Eq. ( 1 ) ,  w h i l e  w i t h  Bo > 50, t h e  " f l o o d i n g "  in long  t u b e s  
i s  d e s c r i b e d  by t he  f o l l o w i n g  r e l a t i o n s h i p  [ 4 ] :  

KI/~ + K~ '~ = (3,2) ' '~. (2 )  

Wallace [6] achieved the only analytical derivation of Eq. (i) for vertical tubes on 
the basis of a model of separated cylindrical phase flows. The application of this model 
to an annular channel leads to Eq. (i) in which the magnitude of the double clearance [7] 
is used in the place of the tube diameter. However, according to experimental data [i, 8], 
the reduced critical phase velocities in the annular channel are independent of the equiva- 
lent diameter, and it is noted in [8] that the characteristic linear dimensions of the annu- 
lar channel in the description of the "flooding" is the channel perimeter. Nevertheless, 
the relationship proposed in the above-cited paper does not reflect this fact. On the basis 
of experimental data, it is demonstrated in [9] that for a rectangular channel it is the 
width of the channel (the larger side) that is the characteristic linear dimension, and that 
the reduced velocities in the case of "flooding" do not depend on the clearance. Then, as- 
suming that the wetted perimeter is the characteristic linear dimension for rectangular and 
annular channels, we obtain a generalization of the Wallace relationship: 

Ir,'~ (~)'"~ + W~ (H) ~/~ = G I ~  L j4 , (3) 
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Fig. i. "Flooding" in rectangular channels: i) calculation ac- 
cording to (3) when C z = 0.725; experiment [9]; 2) channel 
40 x 1.5, 3) 40 x 2.4, 4) 40 x 5 mm 2. 

Fig. 2. Waves at the side surface of a plug. 

in which ~ has been introduced for the transition to Eq. (i) in the case of a circular tube. 
As we can see from Fig. i, this relationship offers a good description of the experimental 
data in [9] with respect to the "flooding" in rectangular channels. 

When a saturated liquid boils in a dead-end channel the reduced velocity of the steam 
exhibits its greatest value at the outlet from the heated segment and is determined from 
the heat-balance equation: 

W~ = N/rFp~. (4) 

In this case, in the steady precrisi~: state a balance is achieved between the mass flow rates 
of the phases, and when the removal of the liquid by the core of the steam is neglected this 
balance is described by the equation 

PlW, =:p~W~. (5) 

It follows from (3)-(5) that the most favorable conditions for "flooding" are realized 
at the outlet from the channel and the boiling heat-exchange crisis for a saturated liquid 
is described by the following criterial expression: 

K~ (1 + (~/p,),/4)~ = C~ 1 / ~  (~/~), (6)  

where according to the definition of the criterion of hydrodynamic two-phase flow stability 
and according to Eq. (4): 

N 
K2 - rF(p~ go(Pl -- p~)),/4 

It follows from Eq. (6) that K 2 is proportional to n I/~ and is independent of the clear- 
ance of the rectangular and annular channels, which is in agreement with the data of [5]. 
Nevertheless, the results of [i0] indicate the existence of a pronounced relationship between 
the criterion K 2 and the clearance of the annular channel for large ratios of the diameter 
to the clearance. 

To describe the transition from the influence on the magnitude K= of the perimeter of 
the annular channel to the influence of its clearance, we will assume that the heat-exchange 
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crisis is brought about by the losses in stability for the plug flow regime, which corresponds 
to visual observations for boiling in thermosiphons that are nearly full [Ii]. Destruction 
of the plug is associated with the separation of the liquid phase in its trailing portion 
and the formation of an extremely perturbed wake [6]. The appearance of unstable one-dimen- 
sional capillary waves at the vertical side surface of the plug (Fig. 2) is determined by 
the dispersion relationship for the inviscid motion of the liquid film [12]: 

Pl(fl - -  nUO 2 cth (n6) + P2 (f] + nU~) 2 cth (n (R - -  6)) = on s, (7) 
where ~ and n are the frequency and wave number. 

The equation for the phase-separation surface: 

6' =- 61 exp {i (nx + ~)} .  (8) 
In the general case, the determined frequency is a complex quantity 

By means of the equality 

e=~+~i. (9) 

(Ux__U2)Z = an t h ( n ( R - - 6 ) ) [ l +  p2th(n6) ] 
P~ Pl th (n (R -- 6)) ' ( i 0 )  

which, according to (8) and (9), determines the conditions for the appearance of waves of 
increasing amplitude, we can change over from the real roots to the complex. Generally, 
02 ~ 01 and 6 < R/2, and we can neglect the second terms in the brackets. 

To determine the velocities of phase motion resulting in the appearance of waves that 
grow with time, in addition to Eq. (i0) we also need a relationship for the length of the 
wave achieved in the channel. The length of the wave was determined in [13] on the basis 
of the principle of minimum dissipation of the relative film energy, and the application 
of this principle for channels of complex geometry raises the need for a numerical solution 
of the three-dimensional problem. In this paper we therefore propose to determine the length 
of the wave on the basis of the familiar experimental fact that in the motion of a solitary 
plug in a nonviscous liquid through a tube that is closed off from above, waves will be ob- 
served in the trailing end of the plug, and the velocity of these waves C = ~/n is equal 
to the limit velocity of plug flotation [14]: 

c =  u ~ .  (ii) 

Then, in accordance with (7), the wave number will be determined by the equation 

~174  + U~)~cth(n6~ (12) 

where 60 is the thickness of the film on flotation of a single plug in a tube closed off 
from above. 

Since the upper end is closed, we have 

(I -- ~0) U, = U. ~p,~, (13) 

where ~P0 = (i - 60/R) 2 is the true vapor content in the rear portion of the plug, which on 
the basis of an approximate analytical solution for the potential flotation of a single plug 
in a circular tube is equal to 0.684 [15]. 

With Bo(D) > 6 and Re I > 300 the velocity of plug flotation U~ in a circular tube is 
determined by the equation [6]: 

U| = 0.345 ] / g  ( P l -  P~)D/p, (14)  

In this case, according to Eqs. (12) and (13), cth (n60) ~ i and the wave number is equal 
to 

~n = p,Ui/(l -- ~0) 2, ( 15 ) 

i.e., the length of the waves in the trailing portion of the plug is diminished as the tube 
diameter increases: 
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~,---2~( I--% ) 2 1.2 
0.345 D (16) 

The length of the waves depends only on the relative velocity of gas and liquid motion 
(the flotation rate) and is independent of the velocity of the mixture and, according to 
(i0) and (15), the condition for the breaking up of the rear portion of the gas plug is de- 
scribed by the equation 

= Bo(D) Bo(R--a) . (17) (U1--U2) 2 p2(l_%)a th I - - %  

To calculate the critical heat flows for the case of boiling in channels closed from 
below, the average velocity of phase motion must be expressed in terms of the flow-rate quan- 
tities, i.e., the reduced velocities. 

In the case of turbulent plug-type flow [6]: 

U2 = Co (~I~i + ~2) + U.,  ( 18 ) 

where C O is an empirical coefficient that is a function of channel geometry and in the case 
of a circular tube is equal to 1.2. 

According to definition, the reduced velocity of the liquid in the film is 

W~ = UI (1 --  (1 --  6/R) 2) ~, 2UI6/R. (19) 

With turbulent film flow [6] 

6/R =-- O. 126 (W*) 2/3 . (20) 

After a number of simple transformations, through utilization of (18)-(20), Eq. (17) 
is brought to the following form: 

co \b--2-. ) +Co + 2 . 0  b--2-. + 1 - ( 1 - % )  p~ 

with consideration of the fact that when Bo(D) ~ 6 the expression for the hyperbolic tangent 
in Eq. (17) assumes a value equal to unity. 

System of equations (5) and (21) uniquely defines the critical value of the reduced 
phase velocities in a dead-end channel. Variation of Pl/O2 allows us to present the solution 

of this system of equations in the form of a curve on a plane ! / f ~  W~ " uWl ) U| , each point 

of which will correspond to the critical state for a certain relationship of densities. 

As we can see from Fig. 3, the solution of Eqs. (5) and (21) with a change in Pz/P2 
from 16 to 1600 can be approximately described by the relationship 

i,/y 1 ~ + F 0, U| =-: 1,15 ((1-- %) Co) -1/2 (22) 

With an increase in the tube diameter, the closure of the film about the channel perim- 
eter ceases to affect the length of the wave which, as it diminishes [Eq. (16)], tends toward 
some finite value determined from the condition that as Bo + ~ the "overturning" of the film 
flow (U I = 0) is described the criterial equality [3] 

K2 = 3.2. (23) 

From Eq. (i0), with hyperbolic cotangents equal to unity and Pz ~ 91, we obtain the 
following conditions for the "overturning" of the film: 

K2 ~- (2M*/)~) 1 / 2 ,  ( 2 4 ) 
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Fig. 3. Boundary of stability for plug flow regime in dead-end 
channels: l, l') Eq. (5) for Pl/P2 = 16 and 1600; 2, 2') Eq. 
(21) for Pl/Oz = 16 and 1600; 3) boundary of stability, solu- 
tion of system (5) and (21) for Pl/P2 = 16-1600; 4) relation- 
ship (22); 5) relationship (1) for Cl = 1. 

Fig. 4. Comparison of theoretical relationship with experimen- 
tal data on the heat-exchange crisis in tubes and annular chan- 
nels: l, i') calculation in accordance with (27) for CI = 0.75 
and 0.68; 2) water, circular tubes [3]; 3) water, annular chan- 
nel, D I = 23 mm and D z = 12 mm [3]; 4-7) tubes and annular chan- 
nels; water, ethanol, carbon tetrachloride, hexane, respectively 
[5]. 

and, according to (23) and (24), as Bo + ~: 

%~ = 0,61". 

We can assume that in the general case 

~2 = ~ + (~,)~, (25 )  

where X' is the wavelength for flotation of a small-diameter plug [Eq. (16)]. The losses 
in plug flow regime stability in the case of heat-carrier boiling in a tube closed from 
below when Bo(D) > 6 will then be described by the equation 

X 1 + 3.2C0 ( / - -  %) VgApt*/pt 
(26) 

which for a tube with D = 7s coincides with the Wallace "flooding" relationship (i), and 
as Bo + ~ changes into Eq. (2). 

From system (4), (5), and (26) we obtain the criterial relationship defining the criti- 
cal heat flows in the boiling of a saturated liquid in long dead-end channels: 

K2(l +(pJm)'/')==C~f(U.) (] + (C~|  -'/4 , (27) 
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where 

f(u.) = 

and for a tube f(U~) = 1.20V~-(~. 

(1,15)z U| 

(1 - ,~o) Co V ~  

Equation (27) is suitable for channels of various geometries, since it contains no nu- 
merical quantities that are characteristic exclusively of a circular tube. Then the influ- 
ence of channel geometry on-the critical heat flows is described by the relationship between 
K 2 and f(U~). In this case, if for C o and U~ there exist in the literature theoretical re- 
lationships [16, 17], then ~0 has been determined only for a circular tube and, consequently, 
in first approximation it should be assumed that ~0 = 0.684 for channels of any geometry. 

The limit (steady-state) velocity of nonviscous flotation of a single plug in the case 
of Bo(H/~) > 6 is determined from the equations [17]: 

~2 ~hen H/a<77, 
Fr (H/~) = 8.8C~ (a/H)'/2 when H/a >/77, (28) 

where C a = 0 .345  - 0 .057D2/D 1, C 2 = 0 .288  - 0 . 0 3 1 a / b  f o r  a n n u l a r  and r e c t a n g u l a r  c h a n n e l s ,  
respectively. 

Then f(U~) depends on the configuration of the channel in the following way: 

4:19 C2 "[/B-o(H/n) when ~ / a < ~ 7 ,  
f (u~) : Co 

(29)  
36,8 C~ -t/~-~ (a/n) when H/a~ 77. 

Co 

It follows from formulas (27) and (29) that when H/a < 77 the criterion K 2 is approxi- 
mately proportional to H I~ , while when H/a ~ 77 the criterion is proportional to a I/~, which 
corresponds to experimental data from various authors [i, 5, i0]. 

As we can see from Fig. 4, relationship (27) describes the heat-exchange crisis in tubes 
and annular channels with an error that does not exceed 5% for the data contained in [3] 
[3 g Bo(H/~) ~ 30, pressure 0.2-12 MPa] and 10% for the data of [5] [Bo(a) ~ 0.54; 4 
Bo(H/~) E 35; 3 E H/a ~ 105, pressure 0.1 MPa]. In this case, the slight difference in the 
magnitudes of C I is a result of the different structural execution of the outlet from the 
working section. 

NOTATION 

pj, the density of the j-th phase; o, the coefficient of surface tension; vl, the kine- 
matic viscosity of the liquid; r, the latent heat of vapor formation; N, the thermal load; 
Wj, the reduced velocity of the j-th phase; D, the tube diameter; D I and D 2, the outside 
and inside diameters of the annular channels; a, the clearance of the annular or rectangular 
channel; b, the width of the rectangular channel; N, the wetted channel perimeter; F, the 
area of the transverse cross section of the channel; s the characteristic linear dimension 

of the channel; I, the wavelength; n = 2~/I, the wave number; ~* = /o/g(pl - P2), the capil- 

lary constant; Bo(s = s163 the Bond number; Kj = Wj~/#g(p I - p2)s the Kutateladze 

Kj/Bol/2(s the dimensionless reduced velocity; Fr(s = U=~/ criterion; 

~g(Pl - P2) s Froude number; Re I = ~g(Pl - Pz)D/plD/~, the Reynolds number. 
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THE EFFECT OF THE NONSTEADY STATE AND TURBULENCE ON INTERPHASE 

HEAT AND MASS TRANSFER IN THE RELATIVE MOTION OF BUBBLES 

IN A BOILING STREAM 

V. A. Gerliga and V. I. Skalozubov UDC 536.421.3 

An analytical solution is proposed for the heat flow between vapor bubbles 
and a liquid with consideration of the nonsteady relative velocity of bub- 
ble motion in the nonsteady pressure field of a boiling stream. 

Numerous papers have been devoted to the questions of rates of change in bubble dimen- 
sions in steady-state nonmoving volumes of a boiling liquid; reviews of these papers are 
presented, for example, in [i~ 2]. However, to create closed mathematical models of non- 
equilibrium boiling flows we must have relationships which describe the transfer of heat 
and mass between moving vapor bubbles and a liquid, with consideration given to the defini- 
tive features of bubble evolution within the stream. At the present time, only individual 
special cases have been investigated. 

A solution was obtained in [3] for the specific heat flow q between the vapor bubbles 
and a liquid, with consideration given to the relative nonsteady velocity of phase motion, 
while the quasisteady self-similar numerical approximation of that solution is presented 
in [4]. In [5] and in the works of Nakoryakov et al. [6] analytical solutions were obtained 
for q with consideration of the nonsteady nature of the pressure field in the process of 
bubble growth in the absence of any effect exerted by the induced convection that is due 
to the relative motion of the bubbles. 

Semiempirical relationships have been derived in [7-9] and in these allowance is made 
for the decisive effect of turbulence on the specific heat flow between vapor bubbles and 
the liquid in a stream. These relationships in this case make no allowance for the relative 
motion of the bubbles, nor of the nonsteady nature of the flow parameters, and in the limit 
(an insignificant degree of flow turbulence) these relationships do not correspond to other 
special solutions. 

In the general case we have the combined effect of all of the above-enumerated factors 
on the exchange of heat and mass between bubbles and liquid in a boiling stream. However, 
at the present time there exists no solution which allows for the nonsteady nature of the 
relative velocity of bubble motion in a field of nonsteady pressure for a boiling turbulent 
stream. 
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